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Abstract
Speech-driven 3D facial animation has recently garnered atten-
tion due to its cost-effective usability in multimedia production.
However, most current advances overlook the intelligibility of
lip movements, limiting the realism of facial expressions. In this
paper, we introduce a method for speech-driven 3D facial ani-
mation to generate accurate lip movements, proposing an audio-
visual multimodal perceptual loss. This loss provides guidance
to train the speech-driven 3D facial animators to generate plau-
sible lip motions aligned with the spoken transcripts. Further-
more, to incorporate proposed audio-visual perceptual loss, we
devise an audio-visual lip reading expert leveraging its prior
knowledge about correlations between speech and lip motions.
We validate the effectiveness of our approach through broad
experiments, showing noticeable improvements in lip synchro-
nization and lip readability performance.
Index Terms: Speech-driven 3D Facial Animation, Audio-
Visual Speech Recognition, Multimodal Perceptual Loss

1. Introduction
The field of speech-driven 3D facial animation is growing
rapidly, with a focus on generating realistic facial expressions
from speech signals. Animating 3D faces in practical applica-
tions often requires retouching or post-correction through man-
ual intervention by skilled animators, which demands substan-
tial human resources and costs. In that sense, speech-driven
3D facial animation is widely receiving attention in indus-
tries such as entertainment, gaming, and virtual communica-
tion [8, 9, 10, 11], enhancing user experience and immersion.

There have been significant advancements towards adopt-
ing learning-based approaches in speech-driven 3D facial ani-
mation [7, 12, 13, 14, 15, 16, 17, 18]; e.g., 3D facial movement
generation is modeled by 1D convolutions over the temporal di-
mension (VOCA [7]) or Transformer layers (FaceFormer [13]
and CodeTalker [14]). These methods focus on model architec-
tures and exhibit appealing performance. Nonetheless, they pri-
marily focus on minimizing Euclidean distance between ground
truth and predicted mesh vertices, overlooking the importance
of generating perceptually natural and intelligible lip move-
ments, which is crucial for human visual comprehension.

To mitigate the unsatisfactory results, particularly in the lip
region, we propose a method to guide the speech-driven 3D
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facial animation to better understand how the lip moves ac-
cording to the spoken words, thus generating more plausible
lip shapes. Specifically, we introduce an audio-visual multi-
modal perceptual loss by leveraging a lip reading expert [1],
which incorporates both visual and speech inputs, to facilitate
the speech-driven 3D facial animator to learn more speech-
related information and generate plausible lip movements. Fur-
thermore, we implement the perceptual loss part in a two-stage
training scheme. In the initial stage, we integrate the lip read-
ing expert, which has been trained on extensive 2D talking
face datasets [2, 3, 4, 5]. Subsequently, in the second stage,
we finetune the lip reading expert to optimize it on 3D facial
datasets [6, 7], concurrently with training a 3D facial animator.
This not only allows us to leverage prior knowledge of large 2D
datasets but to reduce the domain gap from 3D face rendering.

While our proposed method is novel, there have been re-
lated attempts [19, 20, 15] of using lip reading networks to en-
hance the intelligibility of lip shapes in their respective tasks.
SelfTalk [15] introduces a training framework that jointly trains
a 3D face reconstruction module with a lip reading module,
so that reconstructed 3D faces to be guided generate accurate
transcripts synchronized with lip movements. In contrast to our
method, they rely on visual input to train the lip reading mod-
ule, utilizing limited 3D datasets [6, 7], without leveraging prior
knowledge from large-scale 2D talking face datasets [2, 3, 4, 5].

SPECTRE [20], which is closely related to our approach,
demonstrates that leveraging a lip reading expert [21] with prior
knowledge can improve 3D facial reconstruction performance
by minimizing the feature distance of lip movements between
original and rendered videos. They also rely on a visual-only
expert, while our method leverages speech and visual modalities
together in our perceptual loss.

We conduct extensive experiments on BIWI [6] and VO-
CASET [7] and show that our method is effective on dif-
ferent speech-driven 3D facial animator baselines (i.e., Face-
Former [13] and CodeTalker [14]) compared to the model with-
out 2D prior knowledge or speech cues of the lip reading expert.
We further measure the quality of lip movements from lip read-
ability’s perspectives, such as Viseme Error Rate (VER) and
Character Error Rate (CER) following SPECTRE [20].

Our main contributions can be summarized as follows:

• We propose an audio-visual perceptual loss, which guides
the speech-driven 3D facial animator to learn more speech-
related information and generate plausible lip movements.

• We devise an audio-visual lip reading expert tailored for the
audio-visual perceptual loss, achieved via a two-stage train-
ing strategy: incorporating prior knowledge from extensive



Raw	Audio
𝐴"!:#!

Speech-informed	Lip	Reading Expert

Visual	Encoder

Audio	Encoder

Fuse
A	crime	
charger
can	be	a	
realtime…

Predicted	Text	s$!:$

A	crab	
challenged
me,	but
a	quick	…

GT	Text	s$!:$

Cropped
Lip	Sequence	𝐿&!:#

Audio
Encoder

Motion
Decoder

3D	Facial	Animator

Generated
Face	Sequence	𝑌&!:#

ℒ!"

ℒ#$%

Large-scale
2D	Facial	Video	DatasetsStage	1

Stage	2

Lip	Reading	Expert	(Pretraining),

Figure 1: Overview of our proposed framework. We adopt the audio-visual lip reading expert [1] trained on the large-scale 2D
datasets [2, 3, 4, 5] and finetune it on 3D datasets [6, 7] concurrently with training the 3D facial animator. Given an input speech
signal, a 3D facial animator regresses a sequence of 3D facial meshes and the following lip reading expert predicts the spoken transcript
considering both the input speech signal and the sequence of lip regions of output faces.

2D talking face datasets in the initial stage, followed by fine-
tuning of the lip reading expert on 3D talking face datasets.

2. Methods
In this section, we describe the proposed method utilized in
the 3D facial animator baselines (i.e., FaceFormer [13] and
CodeTalker [14]) in detail. The proposed framework consists of
two components: a 3D facial animator and a speech-informed
lip reading expert. The 3D facial animator regresses a sequence
of 3D face vertices from input speech signal, while the lip-
reading expert maps the lip shape sequence, which is rendered
with a differentiable face renderer, to textual representations.
The key idea of our method is to leverage the prior knowledge
of the lip reading expert and to incorporate the audio modality
to the expert for guiding the 3D face animation model to gen-
erate more plausible lip shapes. Figure. 1 illustrates the whole
pipeline of our proposed framework.

2.1. Speech-Driven 3D Facial Animator

The 3D facial animator learns to regress a sequence of 3D facial
movements from an input speech signal. The regression pro-
cess can be formulated as follows: Let Y1:T = (y1, ...,yT)
denotes a sequence of ground truth 3D face vertices, where T
is the length of facial scan sequences and yt ∈ RV×3 repre-
sents the face mesh of each frame which consists of V vertices.
In addition, let A1:T′ = (a1, ...,aT′) be a sequence of speech
representation, where T′ is the length of the input speech signal.
The 3D facial animator predicts a sequence of 3D face vertices
Ŷ1:T = (ŷ1, ..., ŷT) given a speech signal A1:T′ as:

Ŷ1:T = FacialAnimatorθ1(A1:T′), (1)

where θ1 denotes the weight of the 3D facial animator. After
generating the complete 3D facial motion sequence, the 3D fa-
cial animator is trained to predict accurate facial shapes by min-
imizing the Mean Squared Error (MSE) between the outputs of
the 3D facial animator Ŷ1:T and the ground truth Y1:T:

Lmse =
T∑

t=1

V∑
v=1

∥ŷt,v − yt,v∥2. (2)

2.2. Speech-Informed Lip Reading Expert

The speech-driven 3D facial animators exhibit impressive per-
formance in lip synchronization ability. However, solely min-

imizing Euclidean distance between the ground truth and pre-
dicted face vertices is not sufficient to generate intelligible lip
movements. To generate realistic lip movements , we incorpo-
rate a powerful lip reading expert [1] that has the prior knowl-
edge of the correlation between lip motions and their corre-
sponding text content, which is learned from the extensive 2D
talking face datasets [2, 3, 5, 4]. Specifically, we render the se-
quence of 3D face vertices from the 3D face animator into 2D
video frames Î1:T with a differentiable face renderer as:

Î1:T = Renderer(Ŷ1:T). (3)

We crop the rendered gray-scale video frames Î1:T around
the lip regions, resulting in the sequence of lip-cropped video
frames L̂1:T. Then, the sequence of lip-cropped video frames
L̂1:T is fed to the lip reading expert.

Apart from SelfTalk [15], our speech-informed lip reading
expert not only exploits prior knowledge from the 2D large-
scale datasets but also incorporates both visual and speech infor-
mation. This approach produces facial mesh deformation that
better corresponds to the speech, compared to models with a
lip reading expert that only considers lip shapes (refer to Sec.
3.4). The lip reading expert predicts the transcript given both
the sequence of lip-cropped video frames L̂1:T and a sequence
of speech representation A1:T′ as:

ŝ1:T = LipExpertθ2(L̂1:T,A1:T′), (4)

where θ2 is the weight of the lip reading expert. Following [1],
we incorporate the joint CTC/attention loss [22] into our objec-
tive function, which penalizes the error between the predicted
transcript ŝ1:T and ground truth s1:T. The CTC loss Lctc and
the attention loss Lce are for learning the alignment between
the predicted and actual transcripts, respectively. Thus, the lip
expert is finetuned with Audio-Visual (AV) perceptual loss Lav

which can be represented as a weighted sum of two losses:

Lav = λctcLctc + λceLce, (5)

where λ* denotes the loss weight, respectively. We utilize the
AV perceptual loss Lav to guide the 3D facial animator to gen-
erate the output lip movements that are comprehensible enough
to guess the spoken words.

2.3. Training Details

The objective function. As mentioned in SPECTRE [20],
naı̈vely imposing the CTC loss to improve lip movement quality



invokes face distortion since the model may prioritize achiev-
ing perfect lip reading recognition, a common phenomenon ob-
served in adversarial attacks [23, 24]. To address this issue, we
add relative lip vertex loss Lrlv as a regularizer which retains the
spatial structure of the lip regions. The relative lip vertex loss
Lrlv is calculated as the Mean Squared Error (MSE) between the
output lip vertices and the ground truth lip vertices:

Lrlv =

T∑
t=1

VL∑
v=1

∥ŷt,v − yt,v∥2, (6)

where VL denotes the number of lip region vertices.
To sum up, we train the facial animator and finetune the

speech-informed lip reading expert with the objective function:

L = λmseLmse + λavLav + λrlvLrlv, (7)

where λ* denotes the loss weight, respectively.
Implementation details. We conduct experiments on ex-
isting speech-driven 3D facial animation models, i.e., Face-
Former [13] and CodeTalker [14], using them as a 3D facial
animator in our framework. Since CodeTalker separately trains
the discrete motion prior and the auto-regressive facial ani-
mator, we train only the latter using pre-trained motion prior
part. We use the Adam optimizer and set the learning rate
to 1e-4 without weight decay for 100 epochs. Note that we
reproduce all the 3D face animator baselines using publicly
accessible codes and configurations. We feed raw audio in-
puts into the Wav2Vec2.0 [25] encoder and extract the au-
dio features from the last hidden state, following [13, 14, 15].
We adopt the same architecture of Auto-AVSR [1] as our lip-
reading expert, which consists of a visual encoder, an audio
encoder, a multi-layer perceptron (MLP), a projection layer,
and a transformer decoder. We train the lip reading expert
with joint CTC/attention loss [22] on the LRS2 [2], LRS3 [3],
AVSpeech [4], and Voxceleb2 [5] datasets, following the same
training procedure of Auto-AVSR. All experiments are con-
ducted on a single NVIDIA A6000 GPU.

3. Experiments
3.1. Experimental setup

3.1.1. Datasets

We use two publicly available 3D datasets, VOCASET [7] and
BIWI [6], for training and testing. Both of them include the
audio-3D scan pairs of utterances spoken in English. We adopt
the same data splits, i.e., training, validation, and test splits,
following the FaceFormer [13] and CodeTalker [14].

VOCASET. VOCASET [7] provides 480 audio-facial motion
sequences for 12 subjects, captured at 60 Frames Per Second
(FPS). The dataset comprises 255 sentences, some of which
are spoken by multiple speakers. The facial meshes are aligned
with the FLAME [26] topology, containing 5023 vertices.

BIWI. BIWI [6] is a 3D audio-visual dataset with 40 unique
sentences, which are all shared across 14 subjects and captured
at a 25 FPS. The dataset provides dynamic 3D face geometry
aligned with 23,390 vertices. Each utterance is repeated twice
with and without emotion, and we used the emotional subset.
There are 190 training sentences, 24 validation sentences, and
two test datasets: BIWI-Test-A, containing 24 sentences from
6 subjects seen during training, and BIWI-Test-B, including 32
sentences from 8 unseen subjects.

Table 1: Quantitative evaluation results on BIWI-Test-A.

Methods
LVE ↓

(×10−4 mm) CER ↓ VER ↓

FaceFormer [13] 6.0449 72.588% 68.777%
+ AV Guidance 5.5061 68.423% 62.422%
CodeTalker [14] 5.3711 72.592% 65.593%
+ AV Guidance 4.8403 70.711% 63.299%

Table 2: Quantitative evaluation results on VOCASET test split.

Methods
LVE ↓

(×10−5 mm) CER ↓ VER ↓

FaceFormer [13] 3.2496 76.244% 66.932%
+ AV Guidance 3.0987 71.589% 60.250%
CodeTalker [14] 4.0557 75.988% 65.105%
+ AV Guidance 3.9884 75.971% 64.912%

3.1.2. Evaluation metrics

Lip synchronization. To measure lip synchronization perfor-
mance, we calculate Lip Vertex Error (LVE), which is a widely
used metric for speech-driven 3D facial animation evaluation. It
computes the maximal L2 error by comparing all lip vertices of
each predicted frame to the ground truth and takes the average
over all frames in the test set.
Lip readability. LVE alone may not be enough to evaluate the
lip movements, especially in the aspect of lip readability. As
a complement, we measured Character Error Rate (CER) and
Viseme Error Rate (VER) between the actual and the predicted
text from the lip reading expert. VER is calculated by convert-
ing the predicted and actual text to visemes using the Amazon
Polly phoneme-to-viseme mapping [27], following [20].

3.2. Quantitative Results

We incorporate our method into the 3D facial animator base-
lines (i.e., FaceFormer and CodeTalker) and calculate the Lip
Vertex Error (LVE), Character Eror Rate (CER) and Viseme
Error Rate (VER) for all sequences in the BIWI-TEST-A
and VOCASET-Test datasets. As shown in Table. 1 and 2,
Audio-Visual Guidance (AV Guidance), which includes 1) prior
knowledge from the extensive 2D talking face dataset, 2) the
relative lip vertex loss, and 3) speech information into the lip
reading expert, improves all the evaluation metrics compared to
the 3D facial animator baselines on both datasets. This indicates
that our method helps to generate intelligible lip movements. In
particular, the LVE on the BIWI-Test-A is 10% lower than the
baselines, which shows the effectiveness of our proposed audio-
visual perceptual loss.

3.3. Qualitative Results

We also conduct qualitative evaluation to assess the effective-
ness of our method. Figure. 2 illustrates visual comparisons
between the ground truth, FaceFormer [13], CodeTalker [14],
FaceFormer with AV Guidance, and CodeTalker with AV Guid-
ance on both the VOCASET test split and BIWI-Test-A. To
ensure fair comparisons, we provide all models with the same
speaking style as conditional input. To evaluate the lip synchro-
nization quality, we show several frames of output facial anima-
tions generated from the same audio input for each method. We
observe that our proposed methods produce more accurate lip
closure movements compared to the baselines, accurately rep-
resenting fully closed lip motions, particularly for syllables such
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Figure 2: Qualitative comparisons of output facial movements
on VOCASET and BIWI. Compared to the 3D facial animator
baselines [13, 14], the outputs of our method show better lip
synchronization quality for both lip closure and opening words.
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Figure 3: t-SNE visualization for features of audio-
visual/visual-only lip reading expert. Distinct separation of fea-
tures for words “just” (red) and “must” (blue) is observed in
the audio-visual lip reading expert. However, with visual-only
input, features become entangled, hindering distinction.

as “/m/” or “/b/”. Additionally, our method exhibits improved
lip synchronization on mouth-opening as well, such as the syl-
lable “/2/”. These comparison results underscore the effective-
ness of employing an AV Guidance in achieving intelligible lip
motions and accurately discerning various pronunciations.

3.4. Ablation Study

We conduct ablation studies to demonstrate the effectiveness of
the different components of our method. Specifically, we in-
vestigate the impact of AV Guidance, which comprises of prior
knowledge of lip reading expert, the relative lip vertex loss, and
the audio-visual perceptual loss.
Impact of prior knowledge of lip reading expert. To investi-
gate the effectiveness of the prior knowledge from the lip read-
ing expert, we jointly train the 3D facial animator and the lip
reading expert from scratch on the BIWI-Test-A dataset. Ta-
ble. 3 shows noticeable degradation in lip vertex error on base-
line models [13, 14] without prior knowledge. These results
indicate that the prior knowledge of lip reading expert plays an
important role in generating more accurate lip motions, guided
by the correlation between lip motion and spoken text in 2D

Table 3: Ablation study for our components on BIWI-Test-A.

Methods LVE ↓ (×10−4 mm)

FaceFormer [13] + AV Guidance 5.5061
w/o prior knowledge 5.9344
w/o relative lip vertex loss Lrlv 5.9023
w/o speech information 6.0352

CodeTalker [14] + AV Guidance 4.8403
w/o prior knowledge 5.4271
w/o relative lip vertex loss Lrlv 5.6524
w/o speech information 5.3155

talking face datasets [2, 3, 4, 5].
Impact of relative lip vertex loss. We investigate the im-
pact of removing the relative lip vertex loss Lrlv by optimiz-
ing the baseline with AV Guidance but excluding the Lrlv loss.
Table. 3 show a deterioration in lip shape generation on both
baseline models [13, 14], when removing the relative lip ver-
tex loss. This underscores the crucial role of this loss as a
regularizer for retaining the spatial structure of the lip regions.
To assess the effectiveness of the relative lip vertex loss in AV
Guidance regarding the improvement, we conduct an additional
experiment on BIWI-Test-A. In this experiment, we optimize
the baseline model with its original loss and the relative lip ver-
tex loss. FaceFormer with Lrlv and CodeTalker with Lrlv reveals
6.0976×10−4mm and 5.2639×10−4mm of LVE, respectively,
showing subtle improvement or even decrease of performance
compared to the baselines. This suggests that imposing more
regularization on the spatial structure of the lip regions, without
the other components, is ineffective for accurate lip movements.
Impact of audio-visual perceptual loss. We investigate how
combining speech signals with lip reading enhances multimodal
perceptual loss. As shown in Table. 3, leveraging speech infor-
mation for predicting the spoken transcript leads to more effec-
tive learning signals related to speech information being trans-
mitted to the 3D facial animator. Since a single lip motion can
correspond to multiple spoken texts, predicting the transcript
from both visual and speech information yields better quality
transcripts compared to predictions solely from visual informa-
tion, i.e., lip motions. Consequently, with improved transcript
prediction, the 3D facial animator is trained to generate more
intelligible lip movements. We visualize the features of the lip
reading expert using t-SNE [28] in Figure. 3, illustrating cases
of utilizing audio-visual information versus visual-only infor-
mation. Visual-only input entangles the features, hindering dis-
tinction of “just” (red) and “must” (blue). The audio-visual lip
reading expert is shown to be able to guide lip movement.

4. Conclusion
In this paper, we introduce a method to guide the speech-driven
3D facial animation in comprehending lip movements corre-
sponding to spoken words, thereby enhancing the realism of
lip shapes. Our method proposes an audio-visual perceptual
loss, which aids the speech-driven 3D facial animator in acquir-
ing additional speech-related knowledge to produce plausible
lip movements. We develop an audio-visual lip reading expert
using a two-stage training approach: initial integration of prior
knowledge from extensive 2D talking face datasets, followed by
fine-tuning on 3D datasets. Extensive experiments show the ef-
fectiveness of our method in improving both lip synchronization
and the intelligibility of generated lip motion, crucial aspects for
human visual understanding.
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